F/RST DER/VAT/VE

Global Risk & Sustainable Finance

Framework for Next Generation Counterparty Risk Integration of Green Ratings with Credit Ratings

Solving for:

- / Board-level Risk Appetite Mapping by the ExCo to the Business
- / Capital Allocation Process
- / Capital Pricing Process
- / "Internal Green Ratings" plus "Internal Credit Ratings" for "New Counterparty Risk Models"
- / Granular Green Limits and Credit Limits for Spot and Transition Horizon

Author: Date: Johnny Mattimore 05-Dec-2022 (v2.1)

Objectives

To demonstrate the following:

- / How EBA Pillar 3 data provides the foundations for Capital Management
- / How to integrate Green Ratings with Credit Ratings for Internal Models
- / How to use this for mapping Risk Appetite to Capital Management

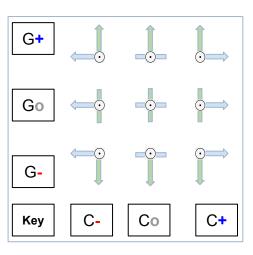
1. EBA Pillar 3 Data provides the foundations for future Capital Management

⁴ 1.1. What have we been doing? Vision of data evolution for SF

F/RST DER/VAT/VE

1.2. Combining Green & Credit Ratings From Single Ratings to a Grid of Ratings

Illustrating Size of Data Metrics Architecture


Credit Ratings: 20 grades Credit Rating Migration 1 year forward: 20x20 = 400 outcomes

Combining Credit & Green Ratings:20x20 = 400 grades Credit & Green Ratings Migration 1 year forward: 20x20x20 = **8,000 outcomes**

Adding State of an Asset (3 modified states for each rating: +ve, stable, -ve) Combining Credit & Green Ratings:60x60 = 3,600 grades Credit & Green Ratings Migration 1 year forward: 60x60x60 = 216,000 outcomes

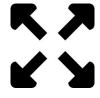
Climate Models 80 years (2100) data grows (80 x 60^3) = 17,280,000 outcomes

State of Asset "Modifiers"

1.3. Data Foundations for Green Ratings F/RST DER/VAT/VE Beyond EBA Pillar 3 Carbon Emissions Reporting

Data sources maturing over time

Baseline using EBA PIllar 3 449a CRR reporting

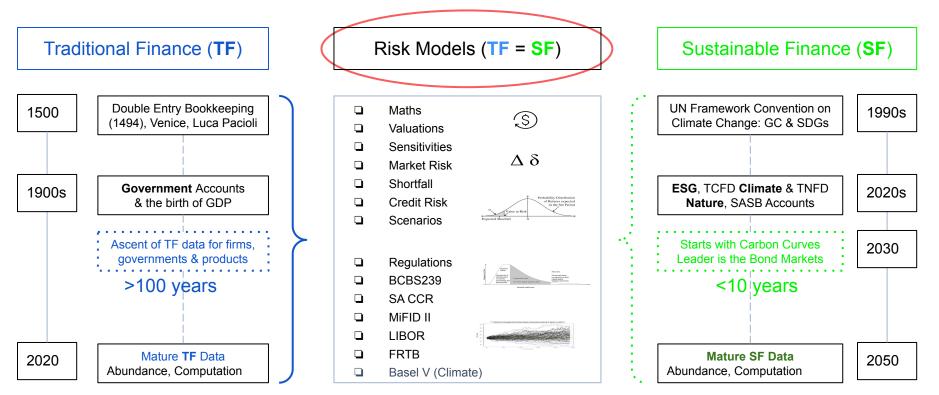

- / Internal sources
- / External sources
- / Proxy methods

Add existing green data outside scope of EBA reporting

- / Real estate EPC/BER data
- / Natural Hazard risk data (e.g. flood risk)
- / Third party ESG data
- / Internal proprietary research

Expand using new sources as they emerge

- / TCFD enhanced/improved reporting extends "E" (environmental metrics) for GHG Emissions
- / TNFD new reporting extends "E" data for Nature Impact
- / Extend sources for "S" (societal metrics) as EU Societal taxonomy evolves
- / Extend sources for "G" (governance metrics) as market sources evolve
- / Then refine over time internal/external/proxy



2. Green Ratings & Credit Ratings integration defines the future of Internal Models

^a 2.1. TF meets SF Risk in Financial Services

It's all about making information "economic ready" - a data problem - but risk models are the same

2.2. Modeling for Green & Credit Ratings F/RST DER/VAT/VE Maths: data store & compute gets large, quickly

Task

Create CREDIT Vectors (Extant) Effort & Output Credit Rating (CR) Vector IG = {AAA, ..., BBB-} Non-IG = {BB+, ..., B-, CCC,CC,C,D} IG set size = 10 Non-IG set size = 10 CR-Vect = 1x20Set size = 20 Modifiers CR-Mod = {+,=,-} {+} = improving {=} = stable {-} = deteriorating Modified Credit Rating Vector IG-Mod set size = 10x3 = 30 Non-IG-Mod set size = 30 CR-Vect-Mod = 1x60 Set size = 60 Ex-Mod Data Set Sizes Spot = 1x20 = 20 Forwards = 20x20 = 400 80 years forward = 80 x 400 = 32,000 Cum-Mod Data Set Sizes Spot = 1x60 = 60 Forwards = 60x60 = 3.600 80 years forward = 80 x 3.600 = 288.000

Task

 Task
Create GREEN Vectors (New)
 Effort & Output
Green Rating (GR) Vector
Green Grade = GG = {G1,,G10}
Non-GG = {G11,,G20}
GG set size = 10
Non-GG set size = 10
GR-Vect = 1x20
Set size = 20
Modifiers (Mod)
GR-Mod = {+,=,-}
{+} = improving
{=} = stable
{-} = deteriorating
Modified Green Rating Vector
GG-Mod set size = 10x3 = 30
Non-GG-Mod set size = 30
GR-Vect-Mod = 1x80
Set size = 60
Ex-Mod Data Set Sizes
Spot = 1x20 = 20
Forwards = 20x20 = 400
80 years forward = 80 x 400 = 32,000
Cum-Mod Data Set Sizes
Spot = 1x60 = 60
Forwards = 60x60 = 3,600
0 years forward = 80 x 3,600 = 288,00

	lask		
Create CRxGR Data Architecture			
	Effort & Output		
	Spot for CRxGR = Matrix (n^2)		
	CRxGR-C2-spot (t=0) = X x X = X ^A 2		
	[Ex-Mod set size = 20x20 = 400]		
	[Cum-Mod set size = 60x60 = 3,600]		
1	CRxGR Matrix Forwards = Cubes (n^3)		
	CRxGR Migration Cube (ex-Mod)		
1	CRxGR-Mig-C3-01yr = 20x20x20 = 8,000		
1	CRxGR-Mig-C3-02yr = 20x20x20 = 8,000		
	, etc		
	[Ex-Mod = 20x20x20 = 8,000]		
	[Cum-Mod = 60x60x60 = 216,000]		
	Number of Years Forward (F x n^3)		
	Climate Forecasts out to the year 2100		
	Forwards are circa 80 years		
	[Ex-Mod = 80 x 8,000 = 640,000]		
	[Cum-Mod = 80 x 216,000 = 17,280,000]		
	Ex-Mod Data Set Sizes		
	Spot = 20x20 = 400		
	Forwards 20x20x20 = 8,000		
	80 years Forward = 80 x 8,000 = 640,000		
	Cum-Mod Data Set Sizes		
	Spot = 60x60 = 3,600		
	Forwards 60x60x60 = 216,000		

Size of Forward Cubes Outcomes (# of paths are larger)

- Quantity of Data Metrics 1 year out = 216,000
- For Climate Risk out 80 years = 17,280,000

Baseline: Sourcing Data

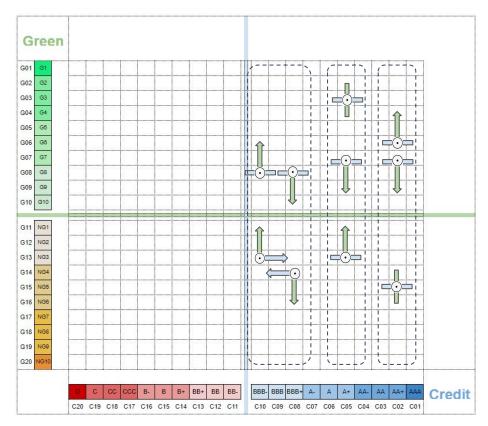
- Internal
- External
- Proxy

Baseline: Options for Filling Data Gaps

- Extending scope of sources
- Academic sources
- Academic proxy models

Baseline: Quality Assurance

- Build QA tests for switching existing sources
- Build QA test for finding new sources
- Preserve audit trail of data sources and switches

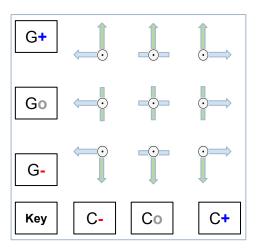

Ratings Migration Forward Data

Primarily done using mathematical simulation models

Approach Re-uses existing sunk cost by extending

- Existing infrastructure
- Existing models
- Existing workflows
- Existing reporting

¹⁰ 2.3. Reclassify Assets by Internal Model F/RST DER/VAT/VE Map, Analyse, Modify & Adjust


Illustrating "Reclassification" of Assets/Collateral

Map: map all Credit Rated Assets

 to Credit-Green Rating Matrix

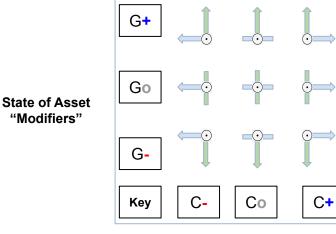
 Analyse: identify anomalies - the good, bad and ugly of capital allocation & pricing
 Modify: apply modifiers for Green Rating trend and Credit Rating trend
 Adjust: remediate classification for capital (risk) allocation and capital (risk) pricing

State of Asset "Modifiers"

3. Mapping Risk Appetite to Green & Credit Ratings for Capital Allocation, Pricing & Limits

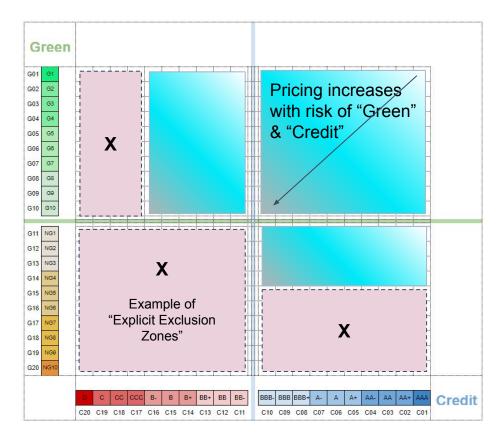
² 3.1. Mapping Risk Appetite: K=Capital F/RST DER/VAT/VE From "Single" Ratings to "Zones" of Ratings

Capital Allocations


K1 to K9: increasing risk appetite, sized by capital, applied to grade "zones"
Exceptions (E): capacity for exceptions
Explicit Exclusions (X): grade zones strictly prohibited

ĸ

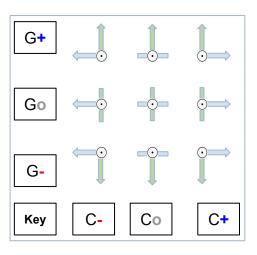
Е


X

Limits: apply limits framework to grades and/or grade zones

¹³ 3.2. **Re-pricing Risk**

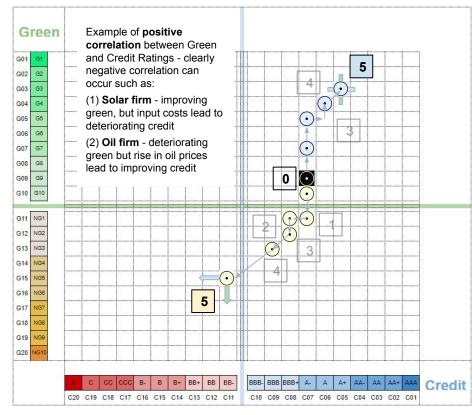
Price Risk using Green Ratings & Credit Ratings


Illustrating Size of Data Sets

Credit Ratings: 20 grades Credit Rating Migration 1 year forward: 20x20 = 400 outcomes

Combining Credit & Green Ratings:20x20 = 400 grades Credit & Green Ratings Migration 1 year forward: 20x20x20 = **8,000 outcomes**

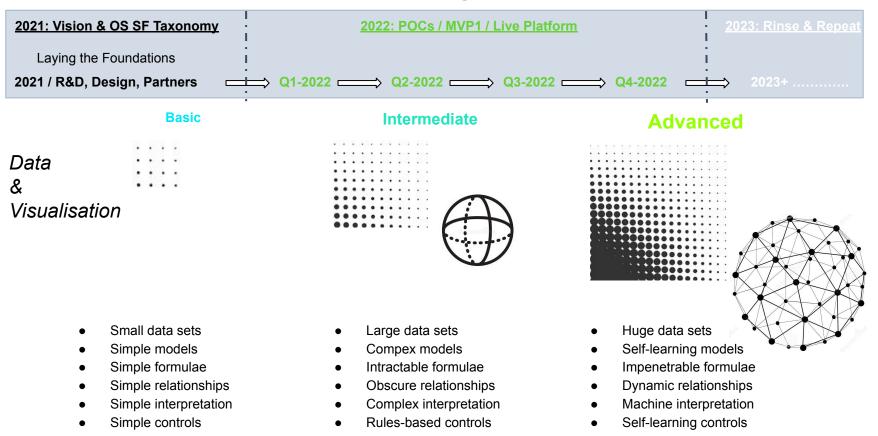
Adding State of an Asset (3 modified states for each rating: +ve, stable, -ve) Combining Credit & Green Ratings:60x60 = 3,600 grades Credit & Green Ratings Migration 1 year forward: 60x60x60 = 216,000 outcomes


State of Asset "Modifiers"

F/RST DER/VAT/VE

* 3.3. Asset Rating Migration

Examples of Improvement & Deterioration



Monitoring Migration: e.g. 5x data-refresh cycles *Improvement*: (C07,G09) ====> (C05,G03) 5 Credit improves: 2 notches Green improves: 6 notches **Deterioration**: (C07,G09) ====> (C11,G15) (5 Credit deteriorates: 4 notches Green deteriorates: 6 notches G+ Go State of Asset "Modifiers" G-C-Co C+ Kev

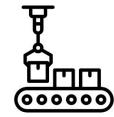
4. Impacts: Data Complexity Cloud Store & Compute Service Componentry

[®]4.1. SF Impact on Data Data Demand will be Huge & Complex

4.2. SF Impact on Technology F/RST DER/VAT/VE **Cloud Services will Dominate Cloud for Data Cloud for Process Cloud for Analysis** Sourcing Human+Machine Store Assessing Performance Compute Themes Themes Themes Prolific reporting Ingestion Regulation • **Financial Risk data** Sampling **Business transition** Climate Risk data Model development Automation • ESG Risk data Testing BIS/MIS/RegRep. Human ideas Human performance Cloud strategy • Migration to cloud Machine ideas Human to NLP ٠ Hvbrid-cloud Artificial intelligence Machine to NLG • Multi-cloud Machine learning Human/Machine risk • Business continuity Neural networks promotion/demotion • Disaster recovery Human performance Machine performance

4.3. SF Impact on Service Models Modernisation will be Fast & Furious

Dismantle the mess
Think likeRebuild Orderly as
Micro-operationsChange work practices by
Cloud Delivery with
Built-in Continuity


Themes - Componentise

- Transaction lifecycle stages
- Data sources
- Operational processes
- Model development
- Model testing
- Model validation
- Model deployment
- Controls frameworks
- Limits frameworks
- Escalation frameworks
- Applications maintenance

Themes - Managed/Hosted Services

- Data cost management
- Data permissioning
- Model lifecycle management
- Pre-transaction controls
- Transaction execution controls
- Post transaction controls
- Regulatory reporting
- New data & models (scenarios/climate)
- New business processes

Themes - Scale Efficiently

- Remove silo working
- Declining unit cost
- Allow experimentation
- New R&D
- New partners
- Flexibility
- Fast change response
- Fast delivery
- Fast fixes
- Reduce errors
- Reduce fines
- Improve reputation >

